WorstPlans.com updates every Monday!

Your weekly source for terrible plans and ideas!

Category: Computers

Never be frustrated by a slow download again, thanks to this new “file download” interface that will give you a newfound appreciation of even the slowest download speed! A new and improved semi-“skeuomorphic” user interface paradigm.

Background:

Sometimes, it seems like a file is taking forever to download (or copy). A speed of 160 kilobytes per second may seem excruciatingly slow, but that’s actually an entire late-1970s floppy disk (Figure 1) per second.

1-floppy

Fig. 1: This is the type of floppy disk that is legitimately floppy, not the 3.5 inch “floppy disk” that is immortalized in the “save file” icon and “💾” emoji.

Proposal:

Instead of just showing a slowly filling up progress bar when downloading (or copying) a file, a computer should show an animation of old floppy disks flying across the screen (Fig 2).

2-floppy-copy-dialog

Fig. 2: These zooming floppy disks make it clear that a LOT of data is being copied.

This will help emphasize how much data is actually being copied: potentially hundreds of floppy disks per second!

Think about how much faster a copy would seem if it were presented in this fashion, instead of as an incredibly slowly-filling-up progress bar.

Bonus second proposal:

Instead of showing just the number of floppy disks per second, the file copy could be represented as a number of monks transcribing the file onto an enormous vellum scroll.

If we assume that an efficient monk could write eight bytes (~8 characters) per second, then a 10 megabyte per second transfer speed would need to be represented as (10 * 1024 * 1024 / 8) 1.3 million monks in a row, all writing to the same file (Figure 3).

3-monks-writing-on-a-scroll

Fig. 3: Over 1.3 million monks would need to be rendered (shown here: 4) in order to accurately depict a 10 megabyte/second copy speed.

That is probably too many monks to display on a screen at once, but the screen could slowly zoom in and out of specific regions of this enormous scroll-copying effort to really give the end user an appreciation for the effort involved.

PROS: Gives an impatient computer user a newfound appreciation of how fast their data transfer really is.

CONS: Spending so much processing power on rendering images of monks copying a file might negatively impact both battery life / energy efficiency and file-copy speed.

Prism glasses will improve your posture! Never hunch over your laptop like some kind of Quasimodo again!

Background:

Since laptops are so convenient and portable, many people work in locations that are not set up for long-term ergonomic comfort (for example, dining room tables or coffeeshop counters, e.g. Figure 1).

1-laptop-situation

Fig. 1: A setup like this is a common work environment, despite its presumably questionable OSHA rating.

The issue:

Since these locations were never designed for laptop use, they are typically set up in such a way that the laptop keyboard and screen are way too low, and you often see people hunching over their laptops in ridiculous fashion (Figure 2).

 

2-laptop-bad-ergonomics

Fig. 2: This highly dubious pose is the common reality of laptop use in non-optimal situations, and is, additionally, an affront to the human form. People tend to blame themselves for having “bad posture,” but really it’s an inescapable element of such a work environment.

Ideally, people imagine that they would sit up straight, as shown in Figure 3. But that is incompatible with the position of the computer screen.

3-ideal-sitting-position

Fig. 3: This “ideal posture” scenario is totally unrealistic given the position of the laptop. The user will inevitably return to the situation shown in Figure 2.

Proposal:

Luckily, the fix is simple: a modified version of belay glasses, a type of prism glasses used in rock climbing that were allow wearers to look up without craning their necks.

Except in this case, the prism glasses will look down at the laptop screen, rather than up, as illustrated in Figure 4.

 

 

4-good-ergonomics

Fig. 4: These “prism glasses” (in this case, actually a giant prism attached to a hat) are  suspended in such a way that the user is able to look directly at the prism, yet see the laptop screen below. The prism would presumably not actually be purple, although technically that would be an option.

Conclusion:

Since prism-based belaying glasses already exist (surprisingly, only commercially available after 2007!), laptop prism glasses are probably not totally infeasible.

It would also be possible to use a VR headset to set up something like this, but at that point you might as well just set up a proper work space.

PROS: Improve your posture!

CONS: The “sweet spot” for seeing the screen is probably extremely narrow, so any movement of the wearer’s head may move the laptop screen out of the user’s view. Additionally, even the slightest imperfections in the prism would probably make text very difficult to read.

Never forget your laptop at home (or at work!) again! The ultimate briefcase / laptop bag for the sophisticated and discerning professional!

Background:

At many companies, employees take a laptop to/from work every day.

In the past, laptops were heavy enough that it would be incredibly obvious whether a laptop was in a bag or not.

The issue:

Modern laptops are light enough that it is possible to take a laptop bag (Figure 1) to work without realizing that there is no laptop inside. This can be an annoying and time-consuming mistake.

1-laptop-bag.png

Fig. 1: The briefcase shown here could easily weigh 5 pounds without a laptop inside, so it may not be immediately obvious whether or not a one-pound laptop is present inside or not.

Proposal:

Proposed here is a laptop bag that makes it unavoidably obvious that there is no laptop inside. The model shown in Figure 2 pops up a spring-powered flag whenever a laptop is not present.

2-flag-system-laptop-bag.png

Fig. 2: The high-visibility “Pack your laptop!” reminder flag (A) at left protrudes from the bag when the laptop compartment is empty. A proposed mechanism is shown at right: the flag is attached to a “laptop cradle'” (B) that is supported by several springs (C). When the laptop is placed in the bag, its weight compresses the springs and pushes down the cradle-and-flag mechanism.

The flag-based approach described above makes it incredibly obvious if a laptop is not present. It also has the advantage of being easily overridden by a user who is intentionally not packing their laptop: they can simply press down on the flag while zipping the bag’s laptop compartment.

Rejected simpler Idea:

One could imagine a laptop bag with a transparent panel that would allow visual confirmation of the presence/absence of a laptop. Although this would work (and requires no moving parts), it would still be easy to grab the bag in a rush without realizing that the laptop was missing. Additionally, it has the disadvantage of advertising the presence of a (highly-stealable) laptop to fellow commuters.

Tactile alternative to the “flag” idea:

For a briefcase, the handle could change texture when the laptop is present. For example, dozens of metal spikes could protrude from the handle until a laptop weighed down the laptop cradle, at which point the spikes would retract into the handle, like they were part of some kind of Indiana-Jones-style ancient temple trap. (This could be all done mechanically, with no need for electronics, using cables that connected the handle to the laptop cradle.)

Conclusion:

You should crowdfund a laptop bag like this right now! If you are successful, it will prove that a market exists, and hundreds of much-cheaper knockoffs will flood the market before your initial prototypes are even done!

PROS: Never forget your laptop again!

CONS: Any object that is similar in shape to a notebook computer (e.g. an actual notebook) would cause false positives.

 

Stop getting hit by self-driving cars with this one fashion trick that involves putting weird labels on all your clothing! Don’t be the last one to catch on to this new fashion trend.

Background:

In a hypothetical future where self-driving cars are increasingly common, they’ll have to do a really good job of automatically distinguishing between things that require sudden braking (e.g. a person in the roadway) and things that are OK to hit (e.g. a tumbling empty cardboard box).

The issue:

This is a hard problem. When a car gets data from its various cameras (and other sensors), it needs to figure out what exactly it is that it is seeing (Figure 1).

1-self-driving-example.png

Fig. 1: This is probably a pedestrian in the roadway, but could it also be a billboard advertisement hundreds of feet away?

Although the specific “distant-billboard-or-close-pedestrian” question in Figure 1 can be answered just by using two cameras to estimate distance, there are situations where the problem must be resolved in a more complex fashion (Figure 2).

2-self-driving-problem.png

Fig. 2: Top: the image is interpreted correctly, and the car does NOT hit the pedestrian. Bottom: the car incorrectly believes that it sees a sunflower, and collides with it at full speed. Lest you think this is totally implausible, check out some specially-crafted adversarial examples (that can turn a panda into a banana) and a method of tricking lane-following algorithms into swerving the car into oncoming traffic.

Proposal:

We propose to place special “this is a human” symbols on articles of clothing that a human might wear (Figure 3).

When a car sees one of these unusual QR-code-like symbols, it will instantly say “ah, sunflowers do not wear specially-marked shoes, time to hit the brakes!”

To avoid this becoming a fashion disaster, these markings would not be apparently at normal human-visible wavelengths of light, but would only be detectable by special camera equipment.

Perhaps the markings could have fluorescent ink in them, and all cars could drive around with UV lights in the front.

3-shoes-with-markings.png

Fig. 3: Left: this is what the shoe looks like to a human—the markings are invisible to the naked eye. Middle: the camera can see wavelengths of light beyond human ability, and can detect these special markings (shown here as yellow checkerboards). Right: the camera sees the checkerboard, and the object-classification algorithm realizes that this shoe is likely to be attached to a human.

One common objection to many self-driving-car-related issues is “couldn’t some criminal put these markers all over the city, to trick self-driving cars?”

The answer is yes, but it would be as equally illegal as it currently is to put mannequins on a winding road (which would also confuse human drivers).

Conclusion:

This might be redundant with an infrared camera—in most locations, a human already is obviously distinguished from the background environment just by their warm-blooded glow in the infrared spectrum.

PROS: This will definitely make me a ton of money when it is licensed by major car manufacturers. Also, would someone please apply for and pay for a patent on my behalf? Thanks!

CONS: If one of these specially-marked shoes falls onto the roadway (perhaps by falling out of someone’s messenger bag while they’re biking), do we really want every car to come to a screeching halt at the sight of a single unattached shoe?

 

 

Save time AND the environment with this new gadget that encourages people to shut down their laptops more often. Finally, the product that the market has been clamoring for: the laptop remote-start key fob.

Background:

Some cars have a “remote start” feature to start a car before you actually get inside. This feature is typically used in regions with extremely cold  weather.

The issue:

Some people like to entirely turn off their laptops when traveling or over a weekend.

But then they have to wait a couple of minutes for their laptop to boot, log in, and start all their applications / open documents again.

Think of all the lost productivity!

Proposal:

Instead of losing precious time on Monday morning waiting for a shut-down-over-the-weekend laptop to boot, your laptop could have a special low-power “wake up” mode activated by a remote control. This would be exactly like a car remote-unlock key fob.

A comparison of laptops with and without this remote-start feature is shown in Figure 1.

1-laptop-remote-comparison.png

Fig. 1: Top: this old-fashioned laptop doesn’t have a remote-start feature, so someone is going to have to wait several seconds for it to boot. Bottom: thanks to the remote control, the laptop on the bottom is ready to go by the time its owner walks up to it.

Conclusion:

The laptop remote could be a new differentiator between brands in an otherwise commoditized market. When every other laptop is the same, surely consumers will flock to buy the one with the “remote start” option!

PROS: Saves valuable employee time. Additionally, probably several watt-hours per year per laptop, since it encourages people to shut down their laptops. The amount of energy saved probably offsets up to a whole day of increased energy usage due to global population growth.

CONS: It might take longer to locate this remote control than to just turn on the laptop by walking over to it.

Harness the toxic nature of the very worst Internet commentators to boost the ad revenue of your social media site / forum hosting site!

Background:

Online communities often have rivalries with one another, especially if the topics that they cover are extremely similar. For example, one could imagine a vicious feud between two different communities of saltwater aquarium enthusiasts.

Proposal:

Maybe we can harness and direct this mean-spiritedness in an interesting way that will, if nothing else, at least entertain outside observers like the gladiatorial matches of the Roman Empire.

To this end, the proposal is to encourage these communities to battle each other in a “survival of the fittest” environment with tangible consequences beyond just ruining a person’s day over the internet.

Details:

For the initial setup, each community on the web site (e.g. each subforum or “subreddit” in Reddit terminology) is allocated ample server resources, so the community can function normally (Figure 1).

1-normal-subforums

Fig. 1: With existing forum software, these various topics could have their own subforums, and the subforums’ denizens are not required to directly interact with each other.

We can represent the total number of server resources as a continent (Figure 2), and the individual subforums as nations within that continent.

Then, each month, a certain percentage of server resources are considered to be “contested” war zones that communities can fight over (Figure 3).

If a subforum community has too few resources, the following negative consequences may occur:

  • Extremely slow page loads.
  • Images are artificially rate-limited to load slowly from top to bottom, to provide an “old modem” feel.
  • Images downsampled to highly-compressed JPEGs.
  • Images downsampled to 256 colors (or even lower).
  • Videos re-scaled to VHS quality.
  • Inability to register new subforum members.
  • Deletion of old / historical posts.

2-map.png

Fig. 2: This is a map of a fictional continent, where “nations” (the various colors) represent the server resources applied toward each subforum. Larger territory indicates more server resources.


Since forum “combat” is highly metaphorical, there are a number of ways that it could be quantified and used to determine winning / losing subforums.

  • The number of long-running conversations in a subforum that can be successfully derailed and closed by infiltrating agents of an “enemy” subforum. Example: if a forum thread about remote-control helicopters can be transformed into a vitriolic argument about the nature of capitalism, it will count as a “win” for the infiltrating agents if that thread is closed by moderators for being off-topic / overly-toxic.
  • The number of successful emotional reactions that can be baited out of one subforum by trolls from another subforum. This could be indicated by either automated “word sentiment analysis” or by counting the number of instances of posts that are flagged for inappropriate content.
  • The number of irrelevant / off-topic meme images that can be placed in an “enemy” subforum, derailing any productive conversation.

 

3-map-war-zones

Fig. 3: Every so often, certain server resources are available for the communities to fight over. The winning subforum can thus seize territory (resources) from the loser.

Conclusion:

This is a great way to increase user loyalty and cause users to become more emotionally invested in your social media site or forum hosting site.

PROS: Increases user engagement and (potentially) ad revenue.

CONS: Increases man’s inhumanity to man.

Replace your windows with television screens: save thousands of dollars of rent a year by VIRTUALLY moving your home or office to an expensive location, without paying any more rent!

Background:

People generally enjoy having a good view from their home or office windows.

However, some locations have a bad view (e.g. a dark alley or cement wall) or cannot accommodate windows at all (e.g. interior offices or basements).

Proposal:

Modern flatscreen displays can be as large as office windows (and some types consume very little electricity).

Thus, we can replace the nonexistent and/or bad windows with large-screen television monitors.

In order to provide a convincing view of the “outdoors” on these screens, we only need two things:

  1. The time of day, so the screens can show a proper day or night scene.
  2. The relative orientations of each screen (e.g., if one screen faces the sea, then a screen on the opposite wall could show a beach).

The scenes could be either real-world video (either live webcam video, or looped video from earlier), or computer-generated scenes. See Figure 1 for an example.

2-SF-scene_SMALLER_FILE.jpg

Fig. 1: Instead of renting an expensive office in a city like New York or San Francisco (shown here), you could simply set the windows of your company to show scenes from that location. Think of the savings!

One additional benefit of virtual screens is that there is no requirement that the screens face out onto a practical (or even real) location (Figure 2).

For example, one could place an office:

  • On the surface of the Moon
  • Orbiting a distant science fiction planet or space station
  • Under the sea
  • In a windswept desert of endless sand dunes
  • Inside an M.C. Escher print, modeled in 3D (this might be extremely confusing)
  • Inside a video game (one could imagine a game development company setting their office windows to show scenes from the under-development game, in order to further oppress and crush the spirit of their programmers with the inescapability of the game)

Computer-generated locations could also feature 3D animations, like a buggy driving around the Moon’s surface or caravans crossing the desert.

 

1-abstract-multi-screen-scene

Fig. 2: There is no requirement that the virtual windows in your multi-screen room must face out onto a real-world scene. You could also imagine that your home or office was inside a giant abstract painting, as shown in this example.

Conclusion:

This project requires only consumer-level hardware and a web site to implement, so I am actually surprised that it appears not to currently exist. You can make an ad-hoc version by using a maps site with Street View (e.g. Google Street View) and adjusting the orientation of your multiple displays accordingly. (The only downside to this method is that the image will not update to match the current time of day).

PROS: Allows you to cheaply obtain a beautiful view for your home or office without paying exorbitant rental prices.

CONS: Large displays can cost up to $200 a year (2019 prices) to operate 24 hours a day, and the entire idea is essentially a huge waste of energy (unless you can use the extra heat generated by the screens).