WorstPlans.com updates every Monday!

Your weekly source for terrible plans and ideas!

Category: Design

With this new “dynamically uncomfortable” mattress technology, you’ll WANT to get out of bed in the morning! Become more productive and never have trouble waking up on time!

The issue:

Sometimes, it’s hard to get out of a comfy bed and face the cruel and merciless world.

Proposal:

We can solve this problem by making a bed that becomes progressively less comfortable as the desired wakeup time arrives.

Certain mattresses already have the ability to dynamically adjust their firmness (for example, the “Sleep Number” brand of air mattresses).

For this “progressively less comfortable mattress” system, we’ll need to go beyond just air mattresses: the bed will need an adjustable interior frame that can become jagged and angular (Figure 1), thus encouraging the bed’s occupant to get up.

1-uncomfortable-bed-spring-settings.png

Fig. 1: Left: the mattress in its default “comfortable” state, where the springs all behave identically. Right: the mattress in “uncomfortable” mode, where a hydraulic mechanism stretches out some springs (shown in blue) and compresses others (shown in red) to make the mattress surface extremely lumpy and uncomfortable. As a result, it will be a relief to get out this horrendously uncomfortable bed even in the coldest and darkest of winter mornings.

The bed would also need an “alarm clock” function in order to cause the comfort level to be set by the time of day.

One could imagine also integrating other “smart health” functions and perhaps controlling the mattress settings via smartphone app (which will inevitably be discontinued within 2 years, leaving the whole system completely useless).

Conclusion:

This technology could also be implemented for futons, sofas, and other similar furniture.

So much effort has been expended on making sofas and beds more comfortable: perhaps it is time for more research to go into making them less comfortable. Really makes you think.

PROS: Increases productivity and makes it easier to be a “morning person.”

CONS: Might potentially stretch out the sheets in a weird fashion, causing them to fray more quickly.

Use your sense of SMELL to diagnose computer errors: the new “smell checker” spell checker is a revolution in error notification!

Background:

In programming, there is the notion of “code smell”—a subtle indication that something is terribly wrong in a piece of source code, but without any (obvious) actual mistake.

For example, if you saw the following:

print("E");
print("RR");
print("OR");
print("!");

instead of

print("ERROR!");

that would be a good indication that something extremely bizarre was going on in a codebase.

The issue:

Unfortunately, in order to notice “code smell,” a person must actively review the source code in question.

Proposal:

But what if code smell could ACTUALLY generate a strange or horrible smell (Figure 1)? Then a person wouldn’t have to actively look for problems—the horrible smell of rotting meat would indicate that there was a problem in the codebase.

This smell-based notification method wouldn’t need to be restricted to programming errors, either: spell checking notifications, software updates, and other information could all be conveyed by smell.

 

1-code-smell.png

Fig. 1: This bizarrely-formatted source code might cause the laptop to emit a boiled-cabbage smell.

Details:

  • A computer could have an incense-burner-like attachment that would allow it to emit various smells.
  • For example, a spellchecking warning could emit the smell of recently-touched copper coins (Figure 2), while “you have 100 unread emails” could emit the smell of curdled milk.
  • This would allow a user to know what items require attention on their computer without even having to turn on the screen!
  • This smell-dispensing attachment could be refilled just like printer ink, making it extremely eco-friendly.
2-smell-check-spell-check.png

Fig. 2: Different warnings and errors could have different smells of various degrees of noticeability and/or unpleasantness. Here, the user might know that they have both a spelling error AND a grammar error by the mix of the spelling-smell (dog that has spent one hour in the rain) and grammar-smell (recently-touched pennies).

PROS: Allows computer errors to be conveyed without requiring the user to actively look at a screen.

CONS: People get used to strange smells fairly quickly, so these smell-based warnings would need to be addressed quickly, before the user adjusted to the smell and stopped noticing it.

Worried that a new student or a new employee will not get enough help in learning the ropes of their new situation? This problem, and many others, can be solved by a giant egg.

Background:

In many situations, such as political debates, the first day at a new school, or the first day on a job, making a good first impression is extremely important.

The issue:

Unfortunately, it’s hard for a newcomer to reliably make a great first impression if other people aren’t already predisposed to like them.

Proposal:

Fortunately, the animal kingdom has provided us with a solution.

Recall, if you will, how people are almost universally predisposed to have warm feelings for a newly-hatched baby bird (Figure 1).

1-bird-egg.png

Fig. 1: Humans, as a whole, are generally predisposed to nurture the baby bird in the image above, even though it is unlikely that it would make a good politician, classmate, or coworker.

The solution is incredibly obvious: a new student or employee should be introduced to their classmates / coworkers not in the standard fashion (e.g. “This is Zebulon, he’s the new network administrator”) but by hatching them out of a giant egg instead (Figure 2).

2-hatched-egg-employee.png

Fig. 2: New employee onboarding would consist of everyone standing in a circle around a giant egg, out of which the new employee would emerge in birdlike fashion. This could be applied in various situations, for example: 1) introducing a new employee, 2) introducing a transfer student at a new school, or 3) inducting an elite military operative to a shadowy black ops squad.

Conclusion:

As a result of this new employee introduction process, everyone would be predisposed to help the newcomer feel welcome. This is definitely practical, and will almost certainly soon be adopted by schools, corporations, and governments.

PROS: Reduces friction in employee / student / etc. onboarding.

CONS: Requires storing a giant egg somewhere: this might be impractical in situations in which real-estate is at a premium (unless the egg is collapsable or deflatable somehow).

Was your home’s scenic view obstructed by a new building next door? This issue is now solved, thanks to the “window periscope!” Homeowners, rejoice!

Background:

One of the most common complaints about nearby construction is the potential for new structures to block the views of existing residents.

The issue:

Existing residents in a neighborhood occasionally attempt to block nearby construction (often coming up with extremely implausible reasons as a smokescreen), when the real reason is that they just don’t want their current view blocked (Figure 1).

1a-problem.png

Fig. 1: The residents in the blue house at left had a nice view (across vacant lots that they, unfortunately, did not own) until nearby construction blocked it.

Proposal:

Fortunately, modern technology provides a solution that will satisfy the existing residents and allow new construction to proceed: the “window periscope” (Figure 2), a submarine-style periscope that elevates the view from a particular window.

1-periscope-plan.png

Fig. 2: Here, we see the solution: a “window periscope,” shown in red. This periscope consists of a set of mirrors that elevating the view above the roofline of the adjacent building, thus preserving the existing view.

Conclusion:

This is a great plan for suburbs and cities alike! It may pose a moderate engineering challenge due to high winds, moisture, and the difficulty of accessing such a structure for maintenance. But that will just create more jobs, so it’s really a plus. (For example, one could imagine a “chimney sweep”-style profession dedicated to maintaining these window periscopes.)

PROS: Preserves existing views even when new construction is placed right next door, thus reducing the amount of NIMBY-ism that frequently stalls construction.

CONS: May make it difficult or impossible to open the window. If this system becomes widespread, it could lead to an “arms race” of dueling taller and taller periscopes between adjacent buildings. Evidently this situation has historical precedent in the towers of San Gimignano, in Italy.

2-periscope-sketch.png

Supplemental Figure S1: This photorealistic diagram shows the problem in a more abstract fashion.

 

Never worry about finding a parking spot again; park in extremely small spaces thanks to this new hydraulic automobile lifting system!

Background:

In many cities, there are a large number of “almost-a-parking-spot” locations (for example, between two driveways) that can only fit an extremely small car.

Additionally, most popular models of small cars have gotten substantially larger over time.

For example, a 1959 Mini Cooper is 120 inches long, while a 2005 model is 143 inches long (~2 feet longer). A 1966 Toyota Corolla is 152 inches long, while a 2015 Corolla is 182 inches long (2.5 feet longer).

The issue:

These longer cars no longer fit in many small parking spaces (Figure 1).

1-parking-problem-car-does-not-fit

Fig. 1: This is an example of a spot that is almost a parking space. With some creative car redesign, we can still make it work, however!

Proposal:

Since parking spots rarely have a height maximum, there are a number of ways we could re-orient a car to fit it into a parking spot without crushing the car into a cube.

A hydraulic system could be added to a car to allow it to lift itself up in such a way that it now fits in one of these small spots (Figure 2).

2-liftable-car

Fig. 2: Left: the car has been modified with (A) a “foot” that can support the weight of the car, (B) an extendable rear axle that can move the rear wheels forward and down, and (C) an additional telescoping element to push the car up in the first place (and let it down gently). This telescoping element has a small roller on the bottom, rather than a full wheel. Right: the system after deployment.

Now, when a small parking space is found, the driver can line their car up with the back of the spot, get out of the car, and then engage “car lifting” mode to re-orient the car into a vertical orientation that reduces the car’s required horizontal space by approximately 40%.

Conclusion:

This would be a great selling point for people who live in cities with the combination of poor public transportation and poor parking options. Major car manufacturers should start redesigning their cars today.

PROS: Allows a car to fit into a number of previously-un-usable parking spots.

CONS: Cars are generally engineered with the assumption that gravity will always point directly down, so it’s possible that some elements of the car would need to be redesigned. Also, the driver should be sure not to leave any drinks in their cupholders before they engage this system.

This new eco-friendly smart shower head will save water from being wasted while not impacting your enjoyment of a shower! The new video-camera-based Internet-enabled shower is the inescapable trend of the future.

The issue:

When a person takes a shower, it is often the cast that some fraction of the water leaving the shower head lands directly on the shower floor without hitting the shower-taker (Figure 1).

This “off-target” water is totally wasted.

1-normal-shower

Fig. 1: Here, the blue rays indicate water that hits the shower-taker, while the green “off-target” lines indicate water that just immediately sprays onto the floor of the shower.

Proposal:

Thanks to advances in computer vision and inexpensive electronics, it is now possible to figure out, in real time, where the water that leaves each shower nozzle will actually end up. Specifically, we need to determine if there is a human in the path of the water.

In order to accomplish this, a valve is added to each individual shower nozzle (allowing it to be independently opened and closed) and a camera is mounted on the shower head to allow it to track the shower-taker (Figure 2).

The camera feed from the shower is sent to a secure cloud facility, where an advanced machine learning algorithm analyzes it to determine which shower nozzles should be opened or closed. This system should be operable with latency of less than one-tenth of a second, which should be more than sufficient..

2-smart-shower

Fig. 2: The camera can look at the shower-er and determine which shower nozzles are actually aiming at that person (shown as blue circles here). The nozzles that are just aiming at the shower floor can be closed automatically (red), thus saving water and potentially increasing water pressure in the remaining nozzles.

Conclusion:

This system sells itself: it saves water without negatively impacting the shower-taking experience.

PROS: Saves water and improves shower water pressure.

CONS: Some people might object to having a video feed of themselves in the shower being constantly streamed over the Internet, but it is very unlikely that an Internet company would have a security breach.

 

 

 

Never face “decision paralysis” due to a few one-star reviews on items you’re buying online, thanks to the “SURPRISE ME” purchase randomizer!

Background:

In the post-online-shopping world, there are now nearly innumerable purchasing options for every style of item.

If a person wanted to buy a particular style of baseball cap in the pre-Internet world, they would have the following option:

  • Go to a store
  • Purchase one of the, say, 4 or 5 suitable caps that are in stock.

But in the Internet-shopping era, the process is as follows:

  • Go online
  • Find literally thousands of options at nearly all price points
  • Find hundreds of reviews for each cap, ranging from “This hat saved my life ★★★★★.” to “This hat burned down my village and destroyed everything I ever loved. However, shipping was fast: ★★★☆☆.”

The issue:

A person may be unable to decide on a suitable purchase due to two factors:

  1. The overwhelming quantity of options (“overchoice“).
  2. The incredible amount of information available about each option (“analysis paralysis“). This is especially seen in purchasing of consumer electronics (e.g. a new stereo system or a television).

The solution:

Fortunately, the solution is very straightforward, and can be implemented by any web shopping site (see mockup in Figure 1):

  1. The user finds an item on the web site that is similar to what they’re looking for.
  2. The user adds this item to their shopping cart with a special button marked “SURPRISE ME.”
  3. Instead of adding the exact clicked-on item to their cart, the web site adds a similar randomly-chosen item that costs anywhere between 75% and 125% of the price of the clicked on item.
  4. The user is not informed of the actual contents of their shopping cart at checkout, only the total cost.
  5. A few days later, the mystery item arrives at the user’s house by mail.
1-shop-online

Fig. 1: Here, we see an online store that has a “surprise me” button that will allow the user to purchase a random item that matches their requirements (at left). (This is an alternate version of the situation described in the “solution” section above).

Conclusion:

Using the system above, decision paralysis can be avoided. This increases both the rate of all-devouring consumption of your customers, AND your company’s profit margins!

PROS: Could be legitimately implemented, probably does not break any local or national laws!

CONS: The rate of returns might be extremely high.