WorstPlans.com updates every Monday!

Your weekly source for terrible plans and ideas!

Category: Phones

With “sponsored auto-correct,” you’ll be able to buy a phone for even cheaper! And it will only be SOMEWHAT infuriating to use!

Background:

When typing on a phone with an on-screen virtual keyboard, the auto-correct feature is essential.

Strangely, this auto-correct / auto-complete feature has never been monetized!

Proposal:

In order to bring great deals to consumers and new advertising opportunities to companies, we describe the following auto-correct enhancement.

Currently, auto-correct is boring and predicable. For example:

  • Typing “I’m going” may suggest the following completions: “to,” “on,” or “out.”
  • Typing: “I like” may suggest “that,” “the,” or “it.”

These are reasonable guesses, but what if we enhanced the autocorrect system to allow for sponsored suggestions (Figure 1).

“I’m going” could suggest:

  • “I’m going to
  • “I’m going on
  • “I’m going—but first, I’m going to drink a refreshing [BRAND NAME] soda, and then

The particular [BRAND NAME] would be determined by whichever company was the highest bidder for the auto-correct ad.

Fig. 1: Left: the traditional autocorrect system suggests “soo__” -> “soon.” Right: the improved ad-sponsored system inserts a valuable promotion into this otherwise-boring text message.

It would also be possible to increase national pride and patriotism by changing the autocorrect to insert mandatory patriotic messages, such as:

“I like” ➡

  • “I like the
  •  “I like our glorious leader-for-life, who will lead our nation to victory over our cowardly foes
  •  “I like to

Or

“I support” ➡

  • “I support the
  • “I support quartering troops in my house—it’s my patriotic duty as a citizen
  • “I support it

Conclusion:

The best part about this system is that each ad implicitly carries the endorsement of the sender: it’s more persuasive to have a friend or trusted colleague text you with “I’ll be at the meeting, let me just finish this Ultra Crunch™ Cereal first” than to just see an impersonal ad demanding that you eat that specific cereal.

There is some prior work in this area: the Amazon Kindle “with special offers” shows ads on its screen while it’s sleeping, in return for being somewhat cheaper.

As an added bonus, each ad reaches TWO people (the sender and the recipient)!

PROS: Helps people afford more extravagant cell phones by subsidizing their purchases in return for ads infecting the auto-correct system.

CONS: None!

Never be concerned whether or not your household electronics are spying on you! This new repurposing of the “ON AIR” sign will save you from fretting!

Background:

It seems that nearly every electronic device with a camera or microphone is now Internet-enabled and can wirelessly send video and audio to the world.

The issue:

Due to the preponderance of electronic hardware in a modern household, it can be difficult which (if any) device is spying on you at that exact moment (Figure 1).

This is a relatively new phenomenon, since it used to be the case that:

  1. Cameras were relatively large
  2. Non-CIA recording devices generally needed to be physically wired to a power source and network cable.

Fig. 1: One of these devices is currently streaming video from the user’s house—but which one? Video-enabled devices sometimes have a recording light (but not always: e.g. phones, tablets), but checking these lights is still annoying and time-consuming. And audio recording generally has no indication whatsoever!

Proposal:

The classic solution to the “are we recording right now?” question is a lit-up “ON AIR” sign [see examples] that can light up whenever a TV station is broadcasting.

This same concept can be applied to modern devices: a person would buy a new piece of “ON AIR” hardware (this would essentially just be a WiFi-enabled screen). This ON AIR sign would connect to the household WiFi network light up any time it detected video being sent out to the Internet.

Detecting that streaming is happening could occur in two ways:

1) Network traffic analysis can generally identify data as “this is a stream of video / audio.” This is a solution that would probably work in most cases.

2) Each video/audio-enabled device can talk to the ON AIR sign over WiFi and notify it that streaming is occurring. This would be on the “honor system”: well-behaved software would periodically report that it was streaming. One benefit of this opt-in method is that streaming devices could send additional metadata: e.g., instead of just “ON AIR (Some computer is sending video),” the user would see “ON AIR (Joe’s PowerBook G4, streaming video over RealPlayer for 4:34)”.


Fig. 2: Thanks to this lit-up “ON AIR” sign, the user knows that there is some device recording them, and exactly which device is responsible (in this case, the “smart television”).

Of course, neither of these methods is a 100% guarantee of detecting live video being streamed: for example, a phone that was using its cellular data to stream would not be detected.

Conclusion:

This could probably be a legitimate product!

PROS: Would be a good value-add option for a router manufacturer. “This router will light up if it detects outgoing video/audio!”

CONS: Might cause the user to become extremely paranoid upon realizing that their watch, tablet, computer, phone, external monitor, fitness tracker, headphones, and dozens of other devices could all be surreptitiously spying at any time.

Battle to the death (metaphorically) when getting customer support over the phone, thanks to the new “phone support roguelike” text adventure system! Customer support will never be the same again.

Background:

Sometimes, getting technical support from a company requires making an actual phone call. Like the audio / voice kind that people used to do in old movies!

Typically, one ends up in an “on hold” scenario in which soothing music is intermittently interrupted by the message “representatives are busy, your call will be answered in the order in which it was received.”

The Issue:

Since this is a very non-interactive process, it is easy for users to feel bored, un-engaged, and unvalued. It’s very likely that a caller will be on hold for half an hour or more, and the hold music loses some of its charm after it repeats five times. (If you want to re-live the experience, try searching for Cisco CallManager Hold Music).

Proposal:

Instead of just having the calls answered in the same order they are received, a company could reward the most attentive callers with faster service—in other words make the customers prove their dedication and loyalty!

Here are three proposals that will accomplish this:

Proposal #1 of 3: “Arbitrary Questions”

This is the simplest to implement (Figure 1): while on hold, a caller will need to occasionally answer simple questions (e.g. “What is two plus two?”). If the user pays attention and answers the question correctly, they remain in their position in the customer support queue. But if they make a mistake or fail to answer, they move down in the queue. Thus, attentive callers get faster service.

1-battle-royale-phone-support.png

Fig. 1: This “customer support flowchart” shows a hypothetical “Arbitrary Question”-based customer service queue. Note that in this case, the penalty for failure is extremely high—complete disconnection! This makes it the world’s first “customer support on-hold roguelike game.”

Proposal #2 of 3: “Text Adventure”

This proposal is inspired by text adventure video games (e.g. Zork) or the famous series of “Choose Your Own Adventure” books. In this system, instead of being presented with simple math questions, the user is asked to survive in a fantasy adventure.

An example text-adventure-themed question might be:

“Your party of adventurers encounters a horrifying army of mummies in the crypt. Do you:

  • 1) Attack them with your mace
  • 2) Throw a lit torch onto their ragged forms
  • 3) Try to retreat
  • 4) Try to convince them that your quest is noble”

This system has the disadvantage of requiring more effort to write, but it has the advantage of potentially being more engaging to the audience*. ([*] This requires that the questions are tailored to the audience correctly: users of a municipal railway line might not as enthused about the mummy-crypt example above as customers for an online board game store would be.)

Proposal #3 of 3: “Battle Royale / Thunderdome Tournament Brackets”

In this system, a tournament bracket is generated to include all callers in a specific interval of time (say, 5 minutes). These users are then pitted against each other in one-on-one trivia battle: whoever answer the most questions correctly advances in the technical support queue, while the loser is moved down in the queue.

This could reward the most loyal fans of a company, since the trivia questions could be themed around that specific company (e.g. an Apple technical support call might ask “Which of these individuals was a co-creator of the original Apple Macintosh?” and then have a list of names).

Conclusion:

All of these systems allow the “on hold” process to be more engaging, thus (presumably) increasing brand loyalty and customer satisfaction.

PROS: Adds a sense of danger and adventure to even the most trivial technical support question.

CONS: If you call for customer support, but you don’t know that much about the product, you might ALWAYS have to wait for hours while the true fans destroy you in (say) Samsung-themed trivia questions.

Avoid being stressed out by non-stop negative news with this new local news app idea, which will report positive happenings as well! And if there aren’t any, it will fabricate them out of nothing, so don’t trust it too much!

Background:

There are many phone apps that provide neighborhood-focused local news updates in real time (e.g. “Nextdoor” and “Citizen”).

This can make a person aware of every single burglary, car accident, “suspicious dog,” and other strange happening that may occur in their general vicinity.

The issue:

While this information can be useful, it often leads to an unrealistically alarming and paranoia-inducing view of daily life.

For example, in a large city, a person is almost always within a mile or two of a robbery or burglary, and these apps will constantly ping the user that crimes are being committed on a non-stop basis in the user’s immediate area.

Proposal:

In order to combat this relentless deluge of negative news, we suggest a modification of the local news app to provide a more “balanced” coverage of what’s actually going on in a neighborhood (Figure 1).

For example, perhaps someone snatched a purse from a cafe, but also at that same time, a kindly neighbor rescued someone’s cat from a tree.

In a “normal” news app, only the purse-snatching would be reported, but here we also report the cat rescue.

 

1-optimistic-local-news

Fig. 1: A neighborhood news app tends to only report gruesome happenings and dangerous things (left). This makes sense, but it also encourages a pessimistic view of one’s neighborhood. On the right, we see a “balanced” number of positive items as well: for example, the negative item “Horse theft” is balanced out by a new map marker for the positive item “very contented horse.”

Conclusion:

If we want to design this app in an extra-cynical fashion, it could just completely fabricate all of the positive situations. As an example, it could randomly populate neighborhoods with fictitious feel-good news like “jogger is complimented on their nice hat” or “dog-walker is high-fived by impressed neighbor.” The fabrications will be harder to detect, since there is no local government department dedicated to collecting statistics on cool and uplifting local happenings. Note: this scenario may negatively affect the reputation of the app if the truth is revealed.

PROS: May reduce the stress of urban living and counteract some of the negative features of constant news updates.

CONS: Crucial “negative” news (e.g. “Huge fire approaching! Evacuate!”) could be drowned out by nonsense like “Extra-fluffy cat spotted at corner of Main and 2nd!”

Fix your “webcam eye contact” issues with this incredible new “swivel camera” laptop idea! Your conference calls will feature totally natural and not-at-all-unsettling eye contact from now on.

Background:

Most laptops include a built-in camera, typically located just above the top edge of the screen.

This type of camera is generally marketed as a “video chat” or “conference call” camera.

The issue:

When a person is on a video call, they tend to look at the image on the screen instead of directly at the camera. (Of course!)

So from the camera’s perspective—and the perspective of the remote video chat partner—the person using the webcam isn’t making eye contact, and is instead looking down semi-randomly.

Proposal:

We can solve the “video chat participant is not making eye contact” scenario by reducing the angle between the camera and the screen.

There are two straightforward ways to do this:

  • Solution #1: Move the laptop much farther away, so the camera and display are at nearly the same angle from the video chatter’s perspective.
  • Solution #2: Move the camera so that it is in front of the display. This is the solution we will be exploring.

Implementing Solution #1 is impractical with a laptop, since it (in most cases) needs to be relatively close to the user.

But Solution #2 is easy: we can put the camera on a swiveling arm and allow it to swing down to the middle of the screen (Figure 1).

Eye contact problems solved!

2-laptop-eye-direction.png

Fig. 1: Left: a normal laptop camera. Even though the chat participants are both making eye contact with the image on their screens, they are actually looking down from the perspective of the top-mounted camera. Right: now that the camera has been “swiveled” to the center of the screen, the chat participants are making eye contact in a natural manner.

PROS: Solves the weird eye gaze issues inherent to video chatting.

CONS: Adds a new fragile plastic part to snap off your laptop.

Bonus Part 1: A simpler solution:

  • Solution #3: The camera doesn’t actually have to move in order to have its viewpoint moved to the center of the display: the same result can be achieved with a small periscope (or fiber optic cable) that hangs on the laptop lid and redirects the camera view to the center of the screen.

One could imagine that such an aftermarket attachment could be manufactured extremely cheaply. Perhaps this is a good crowdfunding opportunity!

Bonus Part 2: Overly complicated solutions:

  • Solution #4: Create a partially-transparent laptop screen and put the camera behind it. This would probably require a new and highly specialized LED panel manufacturing process.
  • Solution #5: Edit the video feed in software, changing the user’s eyes in real time to always point directly at the screen. This is probably feasible, but it could be somewhat unsettling. (See also the related “touch up my appearance” face-smoothing feature on Zoom).

Related Idea:

See also: the laptop camera prism idea for including multiple people on a single machine on a conference call.

Finally, a revolution in user interfaces: move BEYOND the keyboard for numeric input! You can easily type numbers on your phone using this one never-before-seen UI / UX paradigm. Free yourself from the tyranny of the keyboard!

When using a computer, phone, or tablet, it is occasionally the case that a user must type in numbers.

Typing numbers on a computer with a 12-digit physical numeric keypad is fast and easy (Figure 1). Unfortunately, laptops frequently no longer have these hardware keypads, and smartphones and tablets never did.

The issue:

The “soft” keypad on most phones provides no tactile feedback and is often a completely separate part of the onscreen keyboard interface (i.e. you may end up in a completely different “numeric input” mode instead of the standard alphabetical layout you are familiar with).

This may lead to the user inputting incorrect numbers or, at minimum, taking longer than is necessary to input their data.

 

1-tablet-normal-numpad

Fig. 1: The numeric keypad (A.K.A. “numpad”) shown on this smartphone is not easy to interact with. It would be easy to input the wrong number and have your pizza delivered to the wrong house (or some similar calamity).

Proposal:

Fortunately, modern smartphones and tablets have a number of additional sensors that we can repurpose for fast and unambiguous numeric input.

Below: see Proposal T (“Tilt sensor”) in Figure 2 and Proposal M (“Magnetic compass”) in Figure 3.

 

 

 

2-tilt-input.png

Fig. 2: Proposal T (“Tilt sensor”): in order to input a number, the user simply tilts their phone to a specific angle and holds it there for, say, one second. The value entered is the number of degrees the user tilted the phone (from –90º to +90º). For single-digit inputs, we could make the process simpler and map the range from –45º to +45º to 0 to 9, as shown above.

 

3-compass-input.png

Fig. 3: Proposal M (“Magnetic compass”): here, the phone’s magnetic compass is used in order to determine the user’s compass orientation (a number between 0 and 359). The user simply physically rotates themselves (and their phone) to point in the direction of the desired numeric input. In the example above, we have divided the orientation value by 10 in order to reduce the degree of precision demanded from the user (as shown on the left side, an orientation of 270º results in the input “27,” as would 271º, 272º, etc…).

Additional Input Methods:

There are alternative input methods that may also be useful for numeric input. For example, to input the number N, the user could:

  1. Raise their phone N inches into the air
  2. Quickly cover up their phone’s camera N times
  3. Shriek at their phone at (50 + 5*N) decibels. This would be faster than relying on normal voice input, since it would not require complicated machine learning techniques to process.

There may be additional yet-undiscovered methods as well!

PROS: Frees users from the technological dead-end of the hardware keyboard. Finally, innovation in the user input space!

CONS: None.

Follow the cruel and unyielding demands of your phone in order to stay fit on a custom jogging route! Bonus feature: allows the user to participate in the “sharing economy.”

Background:

It’s easy to live a sedentary life in today’s world of modern conveniences.

The issue:

Unfortunately, this is not ideal. While there are already apps that remind you to periodically stretch or walk around, people tend to just dismiss the notifications if they’re busy.

What is needed is an app that has “teeth” and can motivate people to really get some exercise.

Proposal:

The idea is that the phone would hold your ability to respond to text messages “hostage” until you walked around to its liking (Figure 1).

1-blocked-text.png

Fig. 1: In this case, the orange “BLOCKED” text message will not be displayed until the phone’s owner has done the phone’s bidding.

This kind of phone-enforced demand could be as simple as a requirement to hold the phone in a specific way (to show that you’re standing up / stretching / whatever), or as complicated as a multiple-waypoints jogging route (Figure 2) that the phone requires you do go visit (thanks to the GPS, this would be difficult to fool).

2-map-jogging.png

Fig. 2: In this case, the phone requires that the user go visit waypoints 1 and 2 before it will deign to show text messages again.

The blocked services on the phone could also include other apps, such as the web browser / videos / podcasts, and more.

Conclusion:

If the phone can require the user to walk to various places, perhaps this could also be part of the “sharing” economy: the phone could refuse to unlock until the user performs some commercially-valuable action, such as;

  • Delivering groceries from a store to a nearby neighbor
  • Walking someone’s dog on a specific route.
  • Going door-to-door on a route in support of a political candidate or religion of the phone’s choosing.

If humans are going to be ruled over by cruel machines in the future, this would be a good way to ease into it.

PROS: Allows a phone owner to get exercise and stay fit.

CONS: May cause the future from Terminator 2 to occur.

Don’t let a modern user interface coddle you with easy-to-identify-buttons—demand a confusing and unlabeled mystery zone of wonders!

Background:

It is often recommended that pet owners buy “challenging” toys to keep their pets mentally stimulated in a world where the owners take care of all the pet’s needs.

Although an owner could simply put a dog biscuit in a bowl, it would be more exciting for the dog if the biscuit were inside a difficult-to-open ball that required the dog to work to figure it out.

The issue:

Similarly, modern automation has removed many elements of daily life that were once mentally challenging. For example, turn-by-turn directions make it theoretically possible for a person to go through life without ever learning how to read a map.

Proposed idea, which has already been implemented:

A long time ago, any user interface elements on a computer were clearly marked: a button would have a thick border around it, a link would be underlined in blue, etc.

Unfortunately, this sort of coddling may cause the human species to become helpless and incapable.

What is needed is an unforgiving type of interface that does not clearly label elements that accept user input: this will force humans to become better at remembering things.

A case study is available in Figure 1. Can you figure out what is, and is not, an interactable UI element?

Android Guess The Button 1.png

Fig. 1: In order to prevent the user’s brain from atrophying due to lack of use, Google has developed a settings screen for Android that has no visual indication of what is and is not a button. Try puzzling through it yourself: can you guess what tapping on each element would do? Answers in Figure 2. This screenshot is from Android 9, but the situation is identical in Android 10 (2019).

 

Android Guess The Button 2_answers.png

Fig. 2: Answers: BLUE is a normal app button and GREEN is a user-interface-related button. The two red rectangles indicate “buttons” that highlight when clicked, but do nothing otherwise (it is theoretically possible that they do something on other phones).

Google shouldn’t get all there credit here, though: the idea of making a complex swiping-puzzle-based interface was arguably pioneered by Apple. If you don’t believe it, find someone with an iPad and ask them to activate the multiple-apps-on-the-same-screen mode: you’ll be amazed by the quality and difficulty of this puzzle!

Conclusion:

With the addition of unlabeled user interface elements and a huge array of “swipe” gestures, modern phones—both iPhones and Android phones—are adding a new category of exciting brain-challenging puzzles to everyday life.

PROS: It is theoretically possible that a user who plays these memory games with their phone will become better at crucial memorization and concentration-based tasks (although there is zero evidence of this, but it seems intuitively appealing, which is good enough here).

CONS: None!

“Potemkin Maps”: Impress foreign dignitaries and out-of-town investors by following a GPS map route through a misleadingly-nice part of your city!

Background:

Phone map apps often have a few optional settings for a route, such as:

  • Avoid highways (for driving)
  • Fewer bus transfers (for public transit)
  • Avoid hills (for walking)

The issue:

Sometimes, you want drive on the most scenic route from point A to point B, without too much concern about efficiency.

For example, you might want to impress an out-of-town guest, or hide the seedier parts of a city from a visiting foreign dignitary or investor.

Proposal:

The “scenic route” to a destination attempts to route you through the highest-economic-value areas that it can find.

This method, called the “Potemkin Route” after the 1787 idea of the same name, uses the following data:

  • Tax records (to find the highest property values)
  • The police blotter (to avoid areas of high crime)
  • Elevation maps (to look for scenic views)

Then, it routes you to the optimum area to show off the most appealing areas of the region near your route (user interface mockup in Figure 1).

 

1-gps.png

Fig. 1: If you select both [AVOID HIGHWAYS] and [AVOID LOW PROPERTY VALUES], as the user has in this example, your route might be substantially longer.

Conclusion:

You could use this route yourself, even if you aren’t trying to impress a foreign dignitary.

PROS: Allows you to ignore the problems of your city.

CONS: Allows you to ignore the problems of your city.

Improve your cell phone reception AND easily use your cell phone even in bright light with this new incredible fashion accessory: the cell phone cowl!

The issue:

Using a cell phone outdoors can present two main problems, as shown in Figure 1. Specifically, you may be far from a tower (and thus, get poor reception) and the harsh light of the noon sun may make it very difficult to read the text on your phone, especially with the recently-popularized “dark mode” user interface themes.

1-bad-reception

Fig. 1: A) This cell phone is far from a tower, so it gets bad reception (and the battery drains faster). B) the harsh glare of the sun makes it hard to read the screen. Pros and cons of the sun: PRO: allows life to exist on Earth. CON: makes it hard to read Internet comments.

Proposal:

This new fashion accessory, the “Cell Phone Cowl” (Figure 2, A.K.A. “cell phone hood,” or “cell phone wimple”), allows the outdoor phone user to always have a shaded area for using their cell phone.

Additionally, the hood can have a built-in antenna (shown here as an external antenna, although it would probably be possible to run the antenna along the perimeter of the fabric instead). This will allow for better reception even in such remote and cell-phone-inhospitable locations as Downtown San Francisco.

 

2-good-reception-with-shadow.png

Fig. 2: C) The external antenna (plugged into the cell phone by an old-style phone cable) allows this cell phone user to get 5 bars of reception, despite their remote location. D) The hood / cowl provides shade, allowing the user to read Internet posts while cowering from the harsh light of the sun.

Conclusion:

You should pre-order your cell phone cowl before the waitlist gets too long!

PROS: Brings fashion and technology together at last in a way not seen since the incredible future predicted in “R.U. a Cyberpunk?” (1994 image from Mondo 2000).

CONS: An external antenna might hit door frames if you forget to collapse it before going inside, but an internal antenna would make it difficult to machine-wash the cowl. The horrible price of progress!