WorstPlans.com updates every Monday!

Your weekly source for terrible plans and ideas!

Tag: UI / UX

Finally, a revolution in user interfaces: move BEYOND the keyboard for numeric input! You can easily type numbers on your phone using this one never-before-seen UI / UX paradigm. Free yourself from the tyranny of the keyboard!

When using a computer, phone, or tablet, it is occasionally the case that a user must type in numbers.

Typing numbers on a computer with a 12-digit physical numeric keypad is fast and easy (Figure 1). Unfortunately, laptops frequently no longer have these hardware keypads, and smartphones and tablets never did.

The issue:

The “soft” keypad on most phones provides no tactile feedback and is often a completely separate part of the onscreen keyboard interface (i.e. you may end up in a completely different “numeric input” mode instead of the standard alphabetical layout you are familiar with).

This may lead to the user inputting incorrect numbers or, at minimum, taking longer than is necessary to input their data.

 

1-tablet-normal-numpad

Fig. 1: The numeric keypad (A.K.A. “numpad”) shown on this smartphone is not easy to interact with. It would be easy to input the wrong number and have your pizza delivered to the wrong house (or some similar calamity).

Proposal:

Fortunately, modern smartphones and tablets have a number of additional sensors that we can repurpose for fast and unambiguous numeric input.

Below: see Proposal T (“Tilt sensor”) in Figure 2 and Proposal M (“Magnetic compass”) in Figure 3.

 

 

 

2-tilt-input.png

Fig. 2: Proposal T (“Tilt sensor”): in order to input a number, the user simply tilts their phone to a specific angle and holds it there for, say, one second. The value entered is the number of degrees the user tilted the phone (from –90º to +90º). For single-digit inputs, we could make the process simpler and map the range from –45º to +45º to 0 to 9, as shown above.

 

3-compass-input.png

Fig. 3: Proposal M (“Magnetic compass”): here, the phone’s magnetic compass is used in order to determine the user’s compass orientation (a number between 0 and 359). The user simply physically rotates themselves (and their phone) to point in the direction of the desired numeric input. In the example above, we have divided the orientation value by 10 in order to reduce the degree of precision demanded from the user (as shown on the left side, an orientation of 270º results in the input “27,” as would 271º, 272º, etc…).

Additional Input Methods:

There are alternative input methods that may also be useful for numeric input. For example, to input the number N, the user could:

  1. Raise their phone N inches into the air
  2. Quickly cover up their phone’s camera N times
  3. Shriek at their phone at (50 + 5*N) decibels. This would be faster than relying on normal voice input, since it would not require complicated machine learning techniques to process.

There may be additional yet-undiscovered methods as well!

PROS: Frees users from the technological dead-end of the hardware keyboard. Finally, innovation in the user input space!

CONS: None.

Don’t let a modern user interface coddle you with easy-to-identify-buttons—demand a confusing and unlabeled mystery zone of wonders!

Background:

It is often recommended that pet owners buy “challenging” toys to keep their pets mentally stimulated in a world where the owners take care of all the pet’s needs.

Although an owner could simply put a dog biscuit in a bowl, it would be more exciting for the dog if the biscuit were inside a difficult-to-open ball that required the dog to work to figure it out.

The issue:

Similarly, modern automation has removed many elements of daily life that were once mentally challenging. For example, turn-by-turn directions make it theoretically possible for a person to go through life without ever learning how to read a map.

Proposed idea, which has already been implemented:

A long time ago, any user interface elements on a computer were clearly marked: a button would have a thick border around it, a link would be underlined in blue, etc.

Unfortunately, this sort of coddling may cause the human species to become helpless and incapable.

What is needed is an unforgiving type of interface that does not clearly label elements that accept user input: this will force humans to become better at remembering things.

A case study is available in Figure 1. Can you figure out what is, and is not, an interactable UI element?

Android Guess The Button 1.png

Fig. 1: In order to prevent the user’s brain from atrophying due to lack of use, Google has developed a settings screen for Android that has no visual indication of what is and is not a button. Try puzzling through it yourself: can you guess what tapping on each element would do? Answers in Figure 2. This screenshot is from Android 9, but the situation is identical in Android 10 (2019).

 

Android Guess The Button 2_answers.png

Fig. 2: Answers: BLUE is a normal app button and GREEN is a user-interface-related button. The two red rectangles indicate “buttons” that highlight when clicked, but do nothing otherwise (it is theoretically possible that they do something on other phones).

Google shouldn’t get all there credit here, though: the idea of making a complex swiping-puzzle-based interface was arguably pioneered by Apple. If you don’t believe it, find someone with an iPad and ask them to activate the multiple-apps-on-the-same-screen mode: you’ll be amazed by the quality and difficulty of this puzzle!

Conclusion:

With the addition of unlabeled user interface elements and a huge array of “swipe” gestures, modern phones—both iPhones and Android phones—are adding a new category of exciting brain-challenging puzzles to everyday life.

PROS: It is theoretically possible that a user who plays these memory games with their phone will become better at crucial memorization and concentration-based tasks (although there is zero evidence of this, but it seems intuitively appealing, which is good enough here).

CONS: None!