WorstPlans.com updates every Monday!

Your weekly source for terrible plans and ideas!

Tag: pedestrian

If you obey the demands of this phone app, you’ll never have to wait at a stoplight again! If you are a pedestrian, anyway. Might also work for bicyclists and drivers!

Background:

In most American cities, four-way intersections with stoplights are the most common form of traffic control.

The issue:

As a pedestrian, these intersections are frustrating: if the stoplights are not synchronized, you’ll randomly encounter red lights while walking from block to block. But even when lights are synchronized, they are synchronized for car driving speeds. Thus, at normal walking speed, a pedestrian will inevitably spend a large fraction of travel time waiting at crosswalks for the light to turn green.

Although a pedestrian can increase or decrease their walking speed, it is difficult to select an optimal speed without knowing exactly when the light will change.

Proposal:

Fortunately, a phone app can easily measure walking speed and distance to the next traffic light, and then display a recommended walking speed that will get a pedestrian to the light when it is green (Figure 1).

2-stoplight-timer-app

Fig. 1: Since this phone knows how far the next light is and exactly when the light will change, it can recommend a walking pace that will get its owner to the light while the light is green. The green / gray arrow in the middle of the screen is a “progress bar,” showing the pedestrian’s current position relative to the previous intersection (base of arrow) and the next light (tip of arrow).

 

Using this app, a person can enjoy both a more leisurely pace at lights they’d miss anyway, and can walk ever-so-slightly faster (Figure 2) in order to make it through intersections just before the light turns red.

1-stoplight-timer

Fig. 2: In the top example (A), a pedestrian walks at a uniform pace that causes them to have to wait at two of the three lights. In the bottom example (B), the pedestrian is using our new app, and adjusts their walking speed to hit all the lights while they are green. Recommended walking speed is shown by the orange bar at the very bottom.

Conclusion:

This type of app would probably work for drivers and bicyclists as well (ideally through audio instructions).

PROS: Encourages walking in cities, thus improving national cardiovascular fitness.

CONS: Users of this app might wait at fewer lights, but would be at higher risk of being run over by a car / bicyclist / steamroller while distracted by the app’s various recommendations and statistics.

Make your carpool / ride-sharing commute even safer with this amazing plan to add strobe lights to your car—legally! Bicyclists love this one weird tip!

The issue:

One ever-present hazard for bicyclists is the possibility of being “doored”—hit by a suddenly-opened driver’s side door of a parked car.

A similar issue confounds carpool passengers: when exiting a full vehicle, the driver’s-side passenger must open the door directly into traffic (since they cannot exit on the curb side). This presents the obvious risk of being hit by a car that is swerving around the temporarily-parked carpool vehicle, as shown in Figure 1.

1-crash-scenario

Fig. 1: A) The ride-sharing vehicle (blue) is stopped in the farthest-curbside lane, and a passenger is about to exit. A fast approaching-car (red) in the same lane is about to swerve around the parked car. B) The passenger opens the door (purple) and will step out into traffic. C) The red car collides with the open door.

There may be a lot of blame to assign in the scenario in Figure 1 (“the passenger should have waited longer before opening the door” or “the red car shouldn’t have gone around the stopped car”), but it’s easy to see how it would occur without any egregious negligence.

Proposal:

In order to make it obvious that a car door may be opening soon (i.e., that there is an occupant associated with a door of a stopped or nearly-stopped car), the following is proposed:

  • A row of lights are placed on the edges of the car, near the doors. These lights must be easily visible from behind the vehicle.
  • When the door handle is operated, these edge lights flash (see Figure 2). This would provide ~1–2 additional seconds for a driver or bicyclist to react before hitting the door.
  • Optionally, weight sensors in the car seats could detect whether or not someone is likely to exit via a specific door (if there are no passengers in the car, there is no reason for any of the lights to flash except for the ones on the driver’s door). Weight sensors are already used to decide whether or not to deploy passenger air bags, so this wouldn’t be a huge engineering challenge.
2-warning-lights

Fig. 2: Flashing lights on the edge of the car can notify other drivers and bicyclists that a door might be opening soon (or is actively being opened).

Conclusion:

If you own an LED manufacturing plant, you should lobby your local government to make this feature mandatory, and try to avoid letting anyone do any scientific research to determine whether or not it’s actually effective.

PROS: Creates a new source of revenue for the LED light industry.

CONS: It is likely that there would be so many false positives—flashing lights for stopped cars at nearly every intersection, for example—that everyone would tune out these ubiquitous and uninformative warnings.