Combine the best features of vinyl records and online music streaming with the new “gigantic mega record” streaming interface!

Background:

Vinyl records have gained in popularity in the 2010–2020 timeframe, perhaps because people enjoy the tactile sensation and ritualistic elements of playing music on a traditional record turntable.

The Issue:

This style of tactile interaction is unfortunately unavailable in the streaming music space, where the only user interaction is “push button → hear song.”

Unfortunately, although traditional records have a distinctive charm, they are not a space-efficient way of storing music—streaming audio really wins there. Large streaming services currently have ~100 million audio tracks, which we will assume are ~3.5 minutes in length on average (so we’d like to store 350 million minutes of audio.)

What we really want is the best of both worlds: a way to combine the physical interaction of the record player with the enormous song library of streaming audio.

The Solution:

In order to fuse the best aspects of vinyl and streaming, we will create a “gigantic record player” interface, where a huge virtual record is presented to the user (either in a VR interface or as some sort of GPS-map interface).

This record is large enough to store all 100 million songs discussed above. The user can then drag a (virtual) record needle onto a (virtual) giant record in order to get their desired song.

Proposal #1:

The user will need to be able to select their favorite son on this record, so the record groove that represents a song can’t be too small. Let’s assume that 1 millimeter is approximately the highest resolution that a user can reliably place a record needle. So how large will our record need to be? Thanks to the metric system, this is easily calculated (Figure 1).

Fig. 1: 100 million songs × 1 millimeter/song = 100 million millimeters (in radius), which is 100 kilometers. A record of this size would cover approximately the area shown above (with the record in black). British Isles & Ireland for scale.

It would be possible to use a smaller record if we consider the fact that a single 3.5 minute song will not actually need to be hundreds of kilometers long, which brings us to Proposal #2.

Proposal #2:

A single sided 12”-diameter record (6” radius) with a 4”-diameter inner label has a usable area of ~(𝜋×62 – 𝜋×22) = 32𝜋 ≈ 100 in.2.

This holds about 24 minutes of streaming-quality audio, giving us 100 in.2 / 24 min. ≈ 4.17 in.2/minute.

In order to get our 350 million minutes of audio into this, we just need 350 million minutes × 4.17 sq.in / min. ≈ 1.46 billion in.2, which is the area of a circle with a radius of 21558 inches (𝜋×215582), or 1796 feet (Figure 2).

Fig. 2: If a user is willing to walk around the entire record (rather than just moving the needle linearly in a single constrained dimension), we will only need a record that is 3593 feet (1.1 km) in diameter. This is equivalent to 3.38 Eiffel Towers. The 2-inch hole in the middle is not visible at this scale.

Conclusion:

It appears that these records are too large to be reasonably mass-produced as physical objects, but as a virtual environment, possibly accessed through a GPS-map-like interface, it would be feasible.

PROS: Adds satisfying tactile interaction to the song-selection experience.

CONS: The “all songs” record is unfortunately far too large to make it practical as a physical object, except perhaps as a one-off modern art installation..