WorstPlans.com updates every Monday!

Your weekly source for terrible plans and ideas!

Month: February, 2019

Replace your windows with television screens: save thousands of dollars of rent a year by VIRTUALLY moving your home or office to an expensive location, without paying any more rent!


People generally enjoy having a good view from their home or office windows.

However, some locations have a bad view (e.g. a dark alley or cement wall) or cannot accommodate windows at all (e.g. interior offices or basements).


Modern flatscreen displays can be as large as office windows (and some types consume very little electricity).

Thus, we can replace the nonexistent and/or bad windows with large-screen television monitors.

In order to provide a convincing view of the “outdoors” on these screens, we only need two things:

  1. The time of day, so the screens can show a proper day or night scene.
  2. The relative orientations of each screen (e.g., if one screen faces the sea, then a screen on the opposite wall could show a beach).

The scenes could be either real-world video (either live webcam video, or looped video from earlier), or computer-generated scenes. See Figure 1 for an example.


Fig. 1: Instead of renting an expensive office in a city like New York or San Francisco (shown here), you could simply set the windows of your company to show scenes from that location. Think of the savings!

One additional benefit of virtual screens is that there is no requirement that the screens face out onto a practical (or even real) location (Figure 2).

For example, one could place an office:

  • On the surface of the Moon
  • Orbiting a distant science fiction planet or space station
  • Under the sea
  • In a windswept desert of endless sand dunes
  • Inside an M.C. Escher print, modeled in 3D (this might be extremely confusing)
  • Inside a video game (one could imagine a game development company setting their office windows to show scenes from the under-development game, in order to further oppress and crush the spirit of their programmers with the inescapability of the game)

Computer-generated locations could also feature 3D animations, like a buggy driving around the Moon’s surface or caravans crossing the desert.



Fig. 2: There is no requirement that the virtual windows in your multi-screen room must face out onto a real-world scene. You could also imagine that your home or office was inside a giant abstract painting, as shown in this example.


This project requires only consumer-level hardware and a web site to implement, so I am actually surprised that it appears not to currently exist. You can make an ad-hoc version by using a maps site with Street View (e.g. Google Street View) and adjusting the orientation of your multiple displays accordingly. (The only downside to this method is that the image will not update to match the current time of day).

PROS: Allows you to cheaply obtain a beautiful view for your home or office without paying exorbitant rental prices.

CONS: Large displays can cost up to $200 a year (2019 prices) to operate 24 hours a day, and the entire idea is essentially a huge waste of energy (unless you can use the extra heat generated by the screens).

Improve the odds of finding a lost pet with this over-engineered license-plate-based system! The ultimate computer vision project for a machine learning startup.


“Lost cat” and “lost dog” signs are often placed up on telephone poles (Fig. 1), but it’s unlikely that a specific person who sees a lost pet will also have seen the sign (or even know that the pet is actually lost in the first place).



Fig. 1: A person who sees this sign will know to be on the lookout for a lost snake, but the chances of seeing both the snake AND the poster are quite low.


In order to add more people to the lost-pet-searching process, the proposed system is as follows:

On the searchers side:

  • Car owners can add a camera to their car (see license plate example in Figure 2) that constantly scans for unidentified animals. This requires no effort on the part of the driver.
  • The camera saves snapshots and GPS coordinates for every animal it sees, and uploads these to a “Find a Lost Pet” web site. Many of these animals are probably not lost, or even pets!

On the pet-recoverers side:

  • Anyone with a lost pet can post the details of their lost animal and a reward to the “Find a Lost Pet” site. Ideal information would include a photo, approximate location, and the owner’s contact information.

Once the “Find a Lost Pet” image analysis system detects a match between an uploaded image and a lost pet, a “bounty” is issued for the recovery of that pet, and nearby drivers are notified.

Finally, assuming the animal is safely returned in the same number of pieces that it was expected to be in (generally this number is “one”), the bounty is split three ways: the web site, camera owner, and animal-recoverer all get a fraction of the total reward. This aligns everyone’s incentives and encourages people to install pet-scanning cameras in the hope of a payout.


Fig. 2: This license plate camera is a “dog-scanner” camera that is constantly on the lookout for unidentified potentially-lost animals. Backup cameras like this already exist, so producing the hardware for this system would be relatively straightforward.

PROS: This system will help find lost pets, and definitely won’t be repurposed to create a totalitarian police state.

CONS: Not especially useful in finding burrowed or aquatic animals, so try not to lose one of those.